Course Type	Course Code	Name of Course	L	Т	P	Credit
DE	NCHD512	Computational Fluid Dynamics	3	0	0	3

Course Objective

• To provide basic theoretical understanding to the students on mathematical formulation and different approaches underlying computational techniques in fluid flow, heat and mass transfer

Learning Outcomes

 Students will have sufficient knowledge to formulate and solve various problems using CFD including CFD tools.

Unit No.	Description of Lectures	Contact Hours	Learning Outcomes	
1	Introduction to CFD: Basics of CFD and its importance. Basic Conservation Laws: Reynolds transport theorem: Integral and Differential forms of Conservative equation: Continuity Equation, Navier-Stokes equation, energy equation.	6	Introduction to CFD and its applications. Theoretic laws underlying CFD	
2	PDE characteristics: Classification of PDEs: linear, non-linear characteristics equation, parabolic, elliptic, and hyperbolic equations, examples of such equations in fluid mechanics and heat Transfer.	4	Understanding on nature of PDES	
3	Weighted residual Method: Discretization methods, finite volume method.	6	Understanding on Weighted residual method	
4	Steady and unsteady-diffusion: Discretization internal and boundary grid points and, Interface conductivity, source term Linearization. Explicit, implicit, discretization for unsteady-diffusion for 2D and 3D.	8	Formulation of discretization methods for steady and un-steady state.	
5	Solution methods: Linear algebra, direct method, TDMA, line by line, iterative Gauss Seidel, point wise, diagonal dominance, concept of convergence (Graphical) and relaxation parameter.	3	Knowledge on solution methods	
6	Advection diffusion: Upwind, Peclet number, exponential and hybrid scheme, numerical diffusion.	6	Knowledge on advection methods	
7	Flow solution: Staggered grid solution algorithm for Pressure-Velocity coupling: SIMPLE,SIMPLER	6	Formulation of discretization methods for unsteady state	
8	Turbulence modelling: Review of turbulence, direct numerical simulation (DNS), large eddy simulation (LES), and two-equation model.	3	Understanding of turbulent flows	

Total	42	
		J

Textbooks:

- 1. Versteeg, H.K. & Malalasekera, W. (1995) Introduction to Computational Fluid Dynamics: The Finite Volume Method John Wiley & Sons Inc.
- 2. Patankar, S. (1980) Numerical heat transfer and fluid flow, Taylor & Francis.

Reference Books:

- 1. Chung, T. J. (2002) Computational Fluid Dynamics, Cambridge Univ. Press.
- 2. Ranade V, (2002) Computational Flow Modelling For Chemical Reactor Engineering, Acad Press